(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
add(0, x) → x
add(s(x), y) → s(add(x, y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
add(0, z0) → z0
add(s(z0), z1) → s(add(z0, z1))
Tuples:
ADD(s(z0), z1) → c1(ADD(z0, z1))
S tuples:
ADD(s(z0), z1) → c1(ADD(z0, z1))
K tuples:none
Defined Rule Symbols:
add
Defined Pair Symbols:
ADD
Compound Symbols:
c1
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ADD(s(z0), z1) → c1(ADD(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
ADD(s(z0), z1) → c1(ADD(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ADD(x1, x2)) = [5]x1
POL(c1(x1)) = x1
POL(s(x1)) = [1] + x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
add(0, z0) → z0
add(s(z0), z1) → s(add(z0, z1))
Tuples:
ADD(s(z0), z1) → c1(ADD(z0, z1))
S tuples:none
K tuples:
ADD(s(z0), z1) → c1(ADD(z0, z1))
Defined Rule Symbols:
add
Defined Pair Symbols:
ADD
Compound Symbols:
c1
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))